Virtual reality technology is to create a kind of fictitious environment through the computer, through such function as vision , sense of hearing , sense of touch , and so on. they will make the user feel the same of the reality , and can realize th
The book does not profess to be the comprehensive tome on J2EE;instead, it is designed to cover a few of the important topics that lend themselves to use in the situations that are commonly encountered in this domain. It is hoped that a more focused
InGaAs/InP avalanche photodiodes typically work in the gated Geiger mode to achieve near-infrared single-photon detection. By using ultrashort gates and combining with the robust spike-canceling technique that consists of the capacitance-balancing an
A widely and continuously tunable optical parametric generator (OPG) pumped by a 1064-nm acousto-optically Q-switched diode-end-pumped Nd:YAG laser based on MgO-doped periodically poled LiNbO3 crystal with a multigrating structure (29.2-30.4 micron)
We present a novel high-energy, single-mode, all-fiber-based master-oscillator-power-amplifier (MOPA) laser system operating in the C-band with 3.3-ns pulses and a very widely tunable repetition rate, ranging from 30 kHz to 50 MHz. The laser with a m
A new dynamic model is developed for simulating the widely tunable grating assisted codirectional coupler with rear sampled grating reflector (GCSR) lasers. The gain section of the device is calculated in timedomain using traveling-wave method, while
Efficient, high-power, and widely tunable Tm-doped fiber lasers cladding-pumped by diode lasers at 791 nm are demonstrated by use of an external cavity containing a diffraction grating. A maximum output power of 62 W is obtained at 2 004 nm for 140 W
We report a high power and widely tunable erbium-doped fiber (EDF) ring laser using 1480nm pump and high concentration EDF. Large tuning range up to 105nm (1513-1618 nm) has been obtained by optimizing of the EDF length.
We report on a widely tunable, narrow linewidth operation of a Tm:YAG ceramic laser. A volume Bragg grating is used in the cavity as a folding mirror for wavelength selection. The wavelength is tuned from 1956.2 to 1995 nm, leading to a total tuning
We propose a novel 3-dimensional hollow waveguide with a variable air core for widely tunable devices, observed a wavelength shift of 1.8 nm in a hollow waveguide resonator with a displacement of 6 fim in an air core.
We report the fabrication of widely tunable ridge waveguide distributed Bragg reflector (DBR) lasers with InGaAsP butt-joint as grating material. The shape of the butt–joint interface is found to have significant effect on the properties of the laser
A thermally tuned multi-channel interference widely tunable semiconductor laser is designed and demonstrated, for the first time to our knowledge, that realizes a tuning range of more than 45 nm, side-mode suppression ratios up to 56 dB, and Lorentzi