开发工具:
文件大小: 1mb
下载次数: 0
上传时间: 2021-01-14
详细说明:针对深度确定策略梯度算法收敛速率较慢的问题,提出了一种增强型深度确定策略梯度(E-DDPG)算法。该算法在深度确定策略梯度算法的基础上,重新构建两个新的样本池——多样性样本池和高误差样本池。在算法执行过程中,训练样本分别从多样性样本池和高误差样本池按比例选取,以兼顾样本多样性以及样本价值信息,提高样本的利用效率和算法的收敛性能。此外,进一步从理论上证明了利用自模拟度量方法对样本进行相似性度量的合理性,建立值函数与样本相似性之间的关系。将E-DDPG算法以及DDPG算法用于经典的Pendulum问题和MountainCar问题,实验结果表明,E-DDPG具有更好的收敛稳定性,同时具有更快的收敛速率。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: