您好,欢迎光临本网站![请登录][注册会员]  
文件名称: [生物数据挖掘].Biological.Data.Mining.pdf
  所属分类: 硬件开发
  开发工具:
  文件大小: 5mb
  下载次数: 0
  上传时间: 2010-06-18
  提 供 者: apple*****
 详细说明: Modern biology has become an information science. Since the invention of a DNA sequencing method by Sanger in the late seventies, public repositories of genomic sequences have been growing exponentially, doubling in size every 16 months—a rate often compared to the growth of semiconductor transistor densities in CPUs known as Moore’s Law. In the nineties, the public–private race to sequence the human genome further intensified the fervor to generate high-throughput biomolecular data from highly parallel and miniaturized instrume nts. Today, sequencing data from thousands of genomes, including plants, mammals, and microbial genomes, are accumulating at an unprecedented rate. The advent of second-generation DNA sequencing instruments, high-density cDNA microarrays, tandem mass spectrometers, and high-power NMRs have fueled the growth of molecular biology into a wide spectrum of disciplines such as personalized genomics, functional genomics, proteomics, metabolomics, and structural genomics. Few experiments in molecular biology and genetics performed today can afford to ignore the vast amount of biological information publicly accessible. Suddenly, molecular biology and genetics have become data rich. Biological data mining is a data-guzzling turbo engine for postgenomic biology, driving the competitive race toward unprecedented biological discovery opportunities in the twenty-first century. Classical bioinformatics emerged from the study of macromolecules in molecular biology, biochemistry, and biophysics. Analysis, comparison, and classification of DNA and protein sequences were the dominant themes of bioinformatics in the early nineties. Machine learning mainly focused on predicting genes and proteins functions from their sequences and structures. The understanding of cellular functions and processes underlying complex diseases were out of reach. Bioinformatics scientists were a rare breed, and their contribution to molecular biology and genetics was considered marginal, because the computational tools available then for biomolecular data analysis were far more primitive than the array of experimental techniques and assays that were available to life scientists. Today, we are now witnessing the reversal of these past trends. Diverse sets of data types that cover a broad spectrum of genotypes and phenotypes, particularly those related to human health and diseases, have become available. Many interdisciplinary researchers, including applied computer scientists, applied mathematicians, biostatisticians, biomedical researchers, clinical scientists, and biopharmaceutical professionals, have discovered in biology a gold ix x Preface mine of knowledge leading to many exciting possibilities: the unraveling of the tree of life, harnessing the power of microbial organisms for renewable energy, finding new ways to diagnose disease early, and developing new therapeutic compounds that save lives. Much of the experimental high-throughput biology data are generated and analyzed “in haste,” therefore leaving plenty of opportunities for knowledge discovery even after the original data are released. Most of the bets on the race to separate the wheat from the chaff have been placed on biological data mining techniques. After all, when easy, straightforward, first-pass data analysis has not yielded novel biological insights, data mining techniques must be able to help—or, many presumed so. In reality, biological data mining is still much of an “art,” successfully practiced by a few bioinformatics research groups that occupy themselves with solving real-world biological problems. Unlikely data mining in business, where the major concerns are often related to the bottom line—profit—the goals of biological data mining can be as diverse as the spectrum of biological questions that exist. In the business domain, association rules discovered between sales items are immediately actionable; in biology, any unorthodox hypothesis produced by computational models has to be first red-flagged and is lucky to be validated experimentally. In the Internet business domain, classification, clustering, and visualization of blogs, network traffic patterns, and news feeds add significant values to regular Internet users who are unaware of high-level patterns that may exist in the data set; in molecular biology and genetics, any clustering or classification of the data presented to biologists may promptly elicit questions like “great, but how and why did it happen?” or “how can you explain these results in the context of the biology I know?” The majority of general-purpose data mining techniques do not take into consideration the prior knowledge domain of the biological problem, leading them to often underperform hypothesis-driven biological investigative techniques. The high level of variability of measurements inherent in many types of biological experiments or samples, the general unavailability of experimental replicates, the large number of hidden variables in the data, and the high correlation of biomolecular expression measurements also constitute significant challenges in the application of classical data mining methods in biology. Many biological data mining projects are attempted and then abandoned, even by experienced data mining scientists. In the extreme cases, large-scale biological data mining efforts are jokingly labeled as fishing expeditions and dispelled, in national grant proposal review panels. This book represents a culmination of our past research efforts in biological data mining. Throughout this book, we wanted to showcase a small, but noteworthy sample of successful projects involving data mining and molecular biology. Each chapter of the book is authored by a distinguished team of bioinformatics scientists whom we invited to offer the readers the widest possible range of application domains. To ensure high-quality standards, each contributed chapter went through standard peer reviews and a round of revisions. The contributed chapters have been grouped into five major sections. Preface xi The first section, entitled Sequence, Structure, and Function, collects contributions on data mining techniques designed to analyze biological sequences and structures with the objective of discovering novel functional knowledge. The second section, on Genomics, Transcriptomics, and Proteomics, contains studies addressing emerging large-scale data mining challenges in analyzing high-throughput “omics” data. The chapters in the third section, entitled Functional and Molecular Interaction Networks, address emerging systemscale molecular properties and their relevance to cellular functions. The fourth section is about Literature, Ontology, and Knowledge Integrations, and it collects chapters related to knowledge representation, information retrieval, and data integration for structured and unstructured biological data. The contributed works in the fifth and last section, entitled Genome Medicine Applications, address emerging biological data mining applications in medicine. We believe this book can serve as a valuable guide to the field for graduate students, researchers, and practitioners.We hope that the wide range of topics covered will allow readers to appreciate the extent of the impact of data mining in molecular biology and genetics. For us, research in data mining and its applications to biology and genetics is fascinating and rewarding. It may even help to save human lives one day. This field offers great opportunities and rewards if one is prepared to learn molecular biology and genetics, design userfriendly software tools under the proper biological assumptions, and validate all discovered hypotheses rigorously using appropriate models. In closing, we would like to thank all the authors that contributed a chapter in the book. We are also indebted to Randi Cohen, our outstanding publishing editor. Randi efficiently managed timelines and deadlines, gracefully handled the communication with the authors and the reviewers, and took care of every little detail associated with this project. This book could not have been possible without her. Our thanks also go to our families for their support throughout the book project. Jake Y. Chen Indianapolis, Indiana Stefano Lonardi Riverside, California ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: 数据挖掘 计算机
 输入关键字,在本站1000多万海量源码库中尽情搜索: