© 1999-2048 dssz.net 粤ICP备11031372号
[其它] 基于EMD和DNN的高炉铁水硅含量预测。
说明:在高炉炼铁过程中,对铁水中硅含量的预测是最重要但也是最困难的一项。提出了一种基于经验模态分解(EMD)和动态神经网络(DNN)的组合算法,用于预测高炉中铁水的硅含量。为了消除原始历史数据的不同频率分量的相互干扰,EMD算法将原始历史数据分解为一系列不同的频率和固定本征函数(IMF)和一个残差。然后将每个IMF和残差近似于其非线性自回归模型(NARM)并通过DNN进行预测,最后,通过将每个IMF和残差的预测相加,可以得出硅含量的预测。最后,通过对中国某钢铁厂采集的一些硅含量的样本数据进行实验以验证<weixin_38735544> 上传 | 大小:518kb