说明:SAM优化器
锐度感知最小化可有效提高泛化能力
〜在Pytorch中〜
SAM同时将损耗值和损耗锐度最小化。特别地,它寻找位于具有均匀低损耗的邻域中的参数。 SAM改进了模型的通用性,并。此外,它提供了强大的鲁棒性,可与专门针对带有噪声标签的学习的SoTA程序所提供的噪声相提并论。
这是的非官方存储库,。在实现方面,SAM类是一个轻量级包装器,用于计算正则化的“清晰度感知”渐变,该渐变由基础优化器(例如带有动量的SGD)使用。该存储库还包括一个的简单 ;作为概念验证,它在此数据集上以强劲的势头
<weixin_42131628> 上传 | 大小:619kb