说明: 我的思路是这样的: 最速下降法能找出全局最优点,但在接近最优点的区域内就会陷入“齿型”迭代中,使其每进行一步迭代都要花掉非常久的时间,这样长久的等待是无法忍受的,不信你就在我那个程序的第一步迭代中把精度取得很小如:0.000000001等,其实我等过一个钟都没有什么结果出来。 再者我们考究一下 牛顿迭代法求最优问题,牛顿法相对最速下降法的速度就快得多了,而且还有一个好处就是能高度逼近最优值,而不会出现死等待的现象。 如后面的精度,你可以取如:0.0000000000001等。 但是牛顿法也有缺
<guidian103> 上传 | 大小:3kb