说明: 摘要简介:数据的上界和下界概念在人工智能领域中使用得非常普 遍,在粗糙集理论中尤为明显,随着粗集理论的不断发展, 上下边界的概念得到更大范围内的应用。本文将经典的神经 网络和粗集理论有机地结合,提出了一种基于粗集理论的神 经网络,并应用神经网络的粗糙模式建立预测模型。在粗糙 模式下每个神经网络的输入值不是一个单值而是一对值,即 上下边界数据,经典的神经网络在预测模型中采用的是单值 数据作为输入值,但是在一些应用中会产生问题,如医院要 对病人进行病情的跟踪观察,并希望对其未来的情况进行预 测,这
<cuican90> 上传 | 大小:850kb