说明:于是在2009年,斯坦福的李飞飞等科学家一起构筑了用于测试视觉识别性能的ImageNet数据库。初期ImageNet包含了四千多个类别的四百多万张图像,而到了2017年底其已包含两万多个类别的1400~1500万张图像。2009年ImageNet数据库的建立与当时互联网上出现的大量图像数据密切相关,直到2018年的ImageNet中已包括了5400万余张图片,不得不说这加速了机器学习在视觉识别领域的运用进程。视觉识别离不开通过大量的图片训练增强其对相似视觉元素特性的规律总结能力,我们可以将这一思
<Q2408205006> 在 上传 | 大小:6291456