文件名称:
面向大规模科学计算的CPU-GPU异构并行技术研究
开发工具:
文件大小: 5mb
下载次数: 0
上传时间: 2013-06-08
详细说明: 大规模科学计算对科学研究具有及其重要的意义,是计算机学科面临的重大 任务。近年来,随着GPU硬件及其编程模型的快速发展,使用GPU来加速大规 模科学计算应用己成为必然趋势。GPU擅长进行计算密集型操作,而且具有极高 的性价比,非常适合高性能科学计算。然而,如何有效地把科学计算应用移植到 GPU上运行仍是一个很大的挑战。在由CPU和GPU构建的异构系统中,CPU负 责进行复杂的逻辑运算和事务管理等不适合数据并行的计算,GPU负责进行计算 密集度高、逻辑分支简单的大规模数据计算。本文从两个层面研究了面向大规模 科学计算的CPU.GPU异构并行技术。首先,根据CPU—GPU异构平台的特性,本 文提出了CPU.GPU任务划分和CPU.GPU间通信优化两种优化策略。在讨论任务 划分时,本文给出了比例划分法、曲线拟合法和搜索法三种任务划分模型,各自 适用用于不同的情况;在研究CPU—GPU间数据通信时,本文提出了中间结果复用 和长流分段两种方法,从不同角度优化CPU.GPU的通信过程。其次,针对AMD GPU硬件及其编程模型Brook+的特性,本文提出了四种面向GPU的并行优化策 略,包括平衡线程并行性和局部性、分支消除、开发指令级并行和提高访存带宽 利用率。本文 选取了矩阵乘、LU分解和Mgrid三个重要的科学计算程序,把它们 移植到AMDGPU上运行,并使用本文提出的优化策略对各个程序进行了优化。 经测试后发现,这三个程序的性能都得到了很大提升,说明本文提出的异构并行 优化技术是非常有效的。本文的工作对在CPU.GPU异构平台上开发和优化科学计 算应用具有一定的指导意义。 ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.