开发工具:
文件大小: 267kb
下载次数: 0
上传时间: 2014-08-05
详细说明: Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-artperformance on a variety of machine learning tasks. Several researchers have recently pro-posed schemes to parallelize SGD, but all require performance-destroying memory locking andsynchronization. This work aims to show using novel theoretical analysis, algorithms, and im-plementation that SGD can be implemented without any locking. We present an update schemecalled Hogwild! which allows processors access to shared memory with the possibil ity of over-writing each other’s work. We show that when the associated optimization problem is sparse,meaning most gradient updates only modify small parts of the decision variable, then Hogwild!achieves a nearly optimal rate of convergence. We demonstrate experimentally that Hogwild!outperforms alternative schemes that use locking by an order of magnitude. ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.