您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 差分阻抗定义
  所属分类: 硬件开发
  开发工具:
  文件大小: 17kb
  下载次数: 0
  上传时间: 2017-09-19
  提 供 者: air***
 详细说明: Just when you thought you had mastered Zo, the characteristic impedance of a PCB trace, along comes a data sheet that tells you to design for a specific differential impedance. And to make things tougher, it says things like: “… since the coupling of two traces can lower the effective impedance, use 50 Ohm design rules to achieve a differential impedance of approximately 80 Ohms!” Is that confusing or what!! This article shows you what differential impedance is. But more than that, it discusses why it is, and shows you how to make the correct calculations. Single Trace: Figure 1(a) illustrates a typical, individual trace. It has a characteristic impedance, Zo, and carries a current, i. The voltage along it, at any point, is (from Ohm’s law) V = Zo*i. General case, trace pair: Figure 1(b) illustrates a pair of traces. Trace 1 has a characteristic impedance Z11, which corresponds to Zo, above, and current i1. Trace 2 is similarly defined. As we bring Trace 2 closer to Trace 1, current from Trace 2 begins to couple into Trace 1 with a proportionality constant, k. Similarly, Trace 1’s current, i1, begins to couple into Trace 2 with the same proportionality constant. The voltage on each trace, at any point, again from Ohm’s law, is: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now let’s define Z12 = k*Z11 and Z21 = k*Z22. Then, Eqs. 1 can be written as: V1 = Z11 * i1 + Z12 * i2 Eqs. 2 V2 = Z21 * i1 + Z22 * i2 This is the familiar pair of simultaneous equations we often see in texts. The equations can be generalized into an arbitrary number of traces, and they can be expressed in a matrix form that is familiar to many of you. Special case, differential pair: Figure 1(c) illustrates a differential pair of traces. Repeating Equations 1: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now, note that in a carefully designed and balanced situation, Z11 = Z22 = Zo, and i2 = -i1 This leads (with a little manipulation) to: V1 = Zo * i1 * (1-k) Eqs. 3 V2 = -Zo * i1 * (1-k) Note that V1 = -V2, which we already knew, of course, since this is a differential pair. Effective (odd mode) impedance: The voltage, V1, is referenced with respect to ground. The effective impedance of Trace 1 (when taken alone this is called the “odd mode” impedance in the case of differential pairs, or “single mode” impedance in general) is voltage divided by current, or: Zodd = V1/i1 = Zo*(1-k) And since (from above) Zo = Z11 and k = Z12/Z11, this can be rewritten as: Zodd = Z11 - Z12 which is a form also seen in many textbooks. The proper termination of this trace, to prevent reflections, is with a resister whose value is Zodd. Similarly, the odd mode impedance of Trace 2 turns out to be the same (in this special case of a balanced differential pair). ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: 差分
 输入关键字,在本站1000多万海量源码库中尽情搜索: