文件名称:
Spotting Outliers in Large Distributed Datasets using
开发工具:
文件大小: 679kb
下载次数: 0
上传时间: 2018-06-05
详细说明: ABSTRACT Outliers are abnormal instances or observations. Detecting data outliers is a very important concept in Knowledge data discovery. Outlier detection has been studied in the context of a large number of research areas like large distributed systems, data mining, wireless sensor networks(WSN), health monitoring, environmental science, statistics, etc., Density based (DB) outlier detection techniques are robust in detecting outliers. In many applications, too much voluminous distributed data is generating every day. Finding deviating observations in the large distributed database rather than in any individual database is not a simple task. Integrating distributed database cause two major problems. First, render massive data from different databases. In addition, data integration may cause violation of data security and leakage of sensitive information. In this work we propose cell density based mechanism for outlier detection (CDOD) in large distributed databases. A centralized detection paradigm is used; it allows overcoming the expensive data integration and information leakage. The experimental results show robustness for finding outliers in large number of databases, instances and attributes ...展开收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.