您好,欢迎光临本网站![请登录][注册会员]  
文件名称: Advanced Mechatronics and MEMS Devices II 2017.pdf
  所属分类: 讲义
  开发工具:
  文件大小: 36mb
  下载次数: 0
  上传时间: 2018-02-07
  提 供 者: qq_37******
 详细说明: Springer International Publishing Switzerland 2017 This book consists of 30 chapters. Chapter 1 presents the theory and application of actuation of elastomeric micro-devices via capillary force technology. Chapter 2 provides insight into the fundamental design, working principles, and practical guidance of MEMS accelerometers. Details of experimental setups, signal conditioning, and data processing are also provided to construct an integrated performance assessment system. Chapter 3 gives an overview of the impact of the change from a focus on analysis, simulation, and modeling combined with outsourcing hardware design to the use of digital fabrication tools allowing a cyclic design process inside the lab, using many examples from various projects, and shares some insights and lessons learned for facilitating and implementing this process. Chapter 4 presents the design of a family of micro-robots capable of object manipulation in a fluidic environment. Chapter 5 discusses how state-of-theart mobile technologies may be integrated into human-in-the-loop cyber-physical systems and exploited to provide naturalmappings for remote interactions with such systems. A demonstrative example is used to show how an intuitive metaphor is uncovered for performing a balancing task through the teleoperation of a ball and beam test bed. Chapter 6 provides an overview on force/tactile sensor development. By exploiting optoelectronic technology, two tactile sensors that can be used to execute both fine manipulation of objects and safe interaction tasks with humans are designed and realized. Chapter 7 addresses a brief account of issues related to mechanical properties of MEMS. Micro-testing techniques including microtensile and micro-fatigue testing along with the hardware are described with typical sample type, shape, and geometry, depicted with diagrams and images. Chapter 8 studies a type of marmot-like rescue robot for mine safety detection and rescuing. The kinematics, maximum stiffness, minimum stiffness, and global stiffness of the head section of the rescue robot are modeled and analyzed. Chapter 9 presents a systematic review of key control schemes for reconfigurable robotic systems, highlighting their benefits and disadvantages, and also reviews the application of these systems at microscale. Chapter 10 gives a detailed overview of MEMSbased sensors and actuators. Chapter 11 proposes a novel sensing approach to in situ particulate material (soot) load measurement in a diesel particulate filter using electrical capacitance tomography (ECT). Chapter 12 provides an overview of three actuation mechanisms that are relevant for biomedical applications of microfluidics. The topics dealt with include dielectrophoresis, acoustophoresis, and magnetophoresis. Chapter 13 reviews a few mechatronic devices designed and used in ASD screening and discusses a few devices used for therapeutic purposes. Chapter 14 conducts a critical and thorough review on vapor/gas sensing properties of a wide range of electrochemically derivedmetal oxide nano-forms as the sensing layer employing a different device configuration. Chapter 15 develops a wearable blood pressure monitoring system using ultrasound and a microperfusion system using a metal needle with micro-flow channel for measurement of subepidermal biological substances. Chapter 16 discusses the fabrication strategies and materials for the development of physical, chemical, and biosensors. The emerging applications of flexible electronics in wound healing, wearable electronics, implantable devices, and surgical tools, as well as point-of-care diagnostic devices, are also explored. Chapter 17 presents several MEMS devices where the main application is agriculture. Chapter 18 shows the design, fabrication, and testing of a multifunctional MEMS sensor for use in hydraulic systems. The MEMS device is incorporated into a typical fluid power component. Chapter 19 proposes a piezoelectric-actuated rigid nano-needle for single cell wall (SCW) cutting. A fabricated tungsten (W) nano-needle is assembled with a commercial piezoelectric actuator laterally and perpendicularly. Chapter 20 develops a process planning-driven approach for the development of a robotic percussive riveting system for aircraft assembly automation. Chapter 21 introduces photoinduced fabrication technologies for 3D MEMS devices and examines four technologies and their outcome of applications where fabricated feature sizes decrease and resolution increases. Chapter 22 presents a design principle of the OKES by deriving a mathematical model and characterized the OKES performance in terms of working range, positioning accuracy, resolution, linearity, bandwidth, and control effectiveness with the nano-positioning systems. Chapter 23 presents a lab-on-chip microfluidics system for SCM measurement, related to the force required to drag a single cell and Newton’s law of motion inside microfluidics channel. Chapter 24 focuses on the characteristics of micromanipulation in terms of the types and principles of gripping forces. Chapter 25 discusses three important aspects of inertial microfluidics: fundamental mechanism, microchannel designs, and applications. Chapter 26 provides a detailed overview of the different types of piezoelectric force sensors and the dynamic calibration techniques that have been used to calibrate these sensors. Chapter 27 introduces a magnetically driven micro-robotics system to explain the procedure of developing a magnetic levitation stage and proposes a sensor switching mechanismthat combines magnetic flux measurement-based position determination and optical sensor-based position detection. Chapter 28 applies 3D printing molding methods to fabricate a miniature magnetic actuator for an optical image stabilizer, and the application of robust control techniques to actuate the developed miniature magnetic actuators is discussed. Chapter 29 deals with the concept of biofeedback control systems and its structure, and various applicable control methods which are designed to fulfill different system requirements are provided. Chapter 30 develops an inverse adaptive controller design method for the purpose of mitigating the hysteresis effect in the magnetostrictive-actuated dynamic systems. ...展开收缩
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: MEMS Mechatronics Devices
 输入关键字,在本站1000多万海量源码库中尽情搜索: