文件名称:
Automating Inference, Learning, and Design using probabilistic programming
开发工具:
文件大小: 17mb
下载次数: 0
上传时间: 2018-09-14
详细说明: Imagine a world where computational simulations can be inverted as easily as running them forwards, where data can be used to refine models automatically, and where the only expertise one needs to carry out powerful statistical analysis is a basic proficiency in scientific coding. Creating such a world is the ambitious long-term aim of probabilistic programming. The bottleneck for improving the probabilistic models, or simulators, used throughout the quantitative sciences, is often not an ability to devise better models conceptu ally, but a lack of expertise, time, or resources to realize such innovations. Probabilistic programming systems (PPSs) help alleviate this bottleneck by providing an expressive and accessible modeling framework, then automating the required computation to draw inferences from the model, for example finding the model parameters likely to give rise to a certain output. By decoupling model specification and inference, PPSs streamline the process of developing and drawing inferences from new models, while opening up powerful statistical methods to non-experts. Many systems further provide the flexibility to write new and exciting models which would be hard, or even impossible, to convey using conventional statistical frameworks. The central goal of this thesis is to improve and extend PPSs. In particular, we will make advancements to the underlying inference engines and increase the range of problems which can be tackled. For example, we will extend PPSs to a mixed inference-optimization framework, thereby providing automation of tasks such as model learning and engineering design. Meanwhile, we make inroads into constructing systems for automating adaptive sequential design problems, providing potential applications across the sciences. Furthermore, the contributions of the work reach far beyond probabilistic programming, as achieving our goal will require us to make advancements in a number of related fields such as particle Markov chain Monte Carlo methods, Bayesian optimization, and Monte Carlo fundamentals. ...展开详情收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.