开发工具:
文件大小: 983kb
下载次数: 0
上传时间: 2018-12-18
详细说明: 3-D convolutional neural networks (3-D-convNets) have been very recently proposed for action recognition in videos, and promising results are achieved. However, existing 3- D-convNets has two “artificial” requirements that may reduce the quality of video analysis: 1) It requires a fixed-sized (e.g., 112×112) input video; and 2)most of the 3-D-convNets require a fixed-length input (i.e., video shots with fixed number of frames). To tackle these issues, we propose an end-to-end pipeline named Two-stream 3-D-convNet Fusion, which c an recognize human actions in videos of arbitrary size and length using multiple features. Specifically, we decompose a video into spatial and temporal shots. By taking a sequence of shots as input, each stream is implemented using a spatial temporal pyramid pooling (STPP) convNet with a long short-term memory (LSTM) or CNN-E model, softmax scores of which are combined by a late fusion.We devise the STPP convNet to extract equal-dimensional descriptions for each variable-size shot, andwe adopt theLSTM/CNN-Emodel to learn a global description for the input video using these time-varying descriptions. With these advantages, our method should improve all 3-D CNN-based video analysis methods. We empirically evaluate our method for action recognition in videos and the experimental results show that our method outperforms the state-of-the-art methods (both 2-D and 3-D based) on three standard benchmark datasets (UCF101, HMDB51 and ACT datasets). ...展开详情收缩
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: