开发工具:
文件大小: 3kb
下载次数: 0
上传时间: 2019-05-04
详细说明: PCA算法作为多元统计方法的一种,是通过线性空间变换求取主元变量,将高维数据空间投影到低维主元空间,从而消除观测数据之间的冗余信息,得到主元模型和统计控制限。新的映射空间由原始数据变量的线性组合构成。由于投影空间统计特征向量彼此正交,则消除了变量间的关联性,简化了原始过程数据特性分析的复杂程度。内容包括主元的定义和获取,以及通过主元的数据重构。 PCA算法适用于线性、高斯分布的数据,实现数据的降维。只涉及二阶统计特性,并没有考虑到数据高阶统计特性,因此变换后的数据可能仍有高阶冗余信息,只解除了数据之间的相关性,对非线性问题并没有进行相应分析。同时,也没有考虑到数据类之间的信息,只是对数据进行重构而不是分类。因此,对PCA算法的改进一直以来都被广为探索。 PCA假定变量服从高斯分布,则在此基础上计算得到的监控指标T2统计量和Q统计量分布服从一定的分布规律,可以很容易的利用确定的分布特性获得控制置信限。对非高斯分布的变量,不能按某种特定的分布规律推导出控制线。因此,对PCA算法的改进一直以来都被广为探索。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: