文件名称:
Starred_Paper_Hadoop_Spark.docx
开发工具:
文件大小: 2mb
下载次数: 0
上传时间: 2019-08-06
详细说明: 本篇英文论文通过三个具体实例(WordCount Sorted By Key, WordCount Sorted by Values 和 PageRank算法)来对比Hadoop 和 Spark 在大数据应用中运行时间,从而观察这些研究实例随着的迭代计算次数的增加,其时间性能比率的变化和趋势。该课题不仅系统的论述和比较Hadoop和Spark的系统结构、运行原理及各自的生态系统特点,也包括怎样逐步调优系统性能,例如数据压缩类型,内存分配控制,数据分割等手段。实验数据结果表明,由于Spark平台主要基于分布式的内存计算,而Hadoop中的Mapreduce框架在每个map或reduce阶段存在回写或读取硬盘操作,所以Spark的性能优势远远在于Hadoop之上, 但前者以使用大量内存进行数据存贮或计算为代价。另外,在性能优化方面,Spark也采取了一些Hadoop没有充分考虑的因素,如内存宽带利用率、单位时间内的磁盘读写操作,及任务启动初始化时间等,所以相对于Hadoop,Spark表现出更优异的性能。
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
相关搜索: