您好,欢迎光临本网站![请登录][注册会员]  
文件名称: feature_extraction.py
  所属分类: 深度学习
  开发工具:
  文件大小: 3kb
  下载次数: 0
  上传时间: 2020-05-27
  提 供 者: qq_39******
 详细说明:# -*- coding: utf-8 -*- import numpy as np import librosa import random def extract_power(y, sr, size=3): """ extract log mel spectrogram feature :param y: the input signal (audio time series) :param sr: sample rate of 'y' :param size: the length (seconds) of random crop from original audio, default as 3 seconds :return: log-mel spectrogram feature """ # normalization y = y.astype(np.float32) normalization_factor = 1 / np.max(np.abs(y)) y = y * normalization_factor # random crop start = random.randint(0, len(y) - size * sr) y = y[start: start + size * sr] # extract log mel spectrogram ##### powerspec = np.abs(librosa.stft(y,n_fft=128, hop_length=1024)) ** 2 #logmelspec = librosa.power_to_db(melspectrogram) return powerspec def extract_logmel(y, sr, size=3): """ extract log mel spectrogram feature :param y: the input signal (audio time series) :param sr: sample rate of 'y' :param size: the length (seconds) of random crop from original audio, default as 3 seconds :return: log-mel spectrogram feature """ # normalization y = y.astype(np.float32) normalization_factor = 1 / np.max(np.abs(y)) y = y * normalization_factor # random crop start = random.randint(0, len(y) - size * sr) y = y[start: start + size * sr] # extract log mel spectrogram ##### melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024, n_mels=90) logmelspec = librosa.power_to_db(melspectrogram) return logmelspec def extract_mfcc(y, sr, size=3): """ extract MFCC feature :param y: np.ndarray [shape=(n,)], real-valued the input signal (audio time series) :param sr: sample rate of 'y' :param size: the length (seconds) of random crop from original audio, default as 3 seconds :return: MFCC feature """ # normalization y = y.astype(np.float32) normalization_factor = 1 / np.max(np.abs(y))
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 相关搜索: feature_extraction.py
 输入关键字,在本站1000多万海量源码库中尽情搜索: