文件名称:
tf.keras.datasets数据源
开发工具:
文件大小: 700mb
下载次数: 0
上传时间: 2020-08-02
详细说明:boston_housing module: Boston housing price regression dataset.
cifar10 module: CIFAR10 small images classification dataset.
cifar100 module: CIFAR100 small images classification dataset.
fashion_mnist module: Fashion-MNIST dataset.
imdb module: IMDB sentiment classification dataset.
mnist module: MNIST handwritten digits dataset.
reuters module: Reuters topic classification dataset.
import tensorflow as tf
from tensorflow import keras
fashion_mnist = keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
cifar100 = keras.datasets.cifar100
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
cifar10 = keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
imdb = keras.datasets.imdb
(x_train, y_train), (x_test, y_test) = imdb.load_data()
# word_index is a dictionary mapping words to an integer index
word_index = imdb.get_word_index()
# We reverse it, mapping integer indices to words
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# We decode the review; note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in x_train[0]])
print(decoded_review)
boston_housing = keras.datasets.boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
reuters= keras.datasets.reuters
(x_train, y_train), (x_test, y_test) = reuters.load_data()
tf.keras.datasets.reuters.get_word_index(
path='reuters_word_index.json'
)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
相关说明
- 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
- 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。
- 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
- 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
- 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
- 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.