您好,欢迎光临本网站![请登录][注册会员]  
文件名称: 2007Boosting for Transfer Learning.pdf
  所属分类: 深度学习
  开发工具:
  文件大小: 464kb
  下载次数: 0
  上传时间: 2020-11-05
  提 供 者: liz****
 详细说明:论文摘要:传统机器学习的基本假设是:训练数据和测试数据应该处于相同的分布下。然而,在许多情况下,这种假设并不成立。当来自一个新域的任务出现,而只有来自类似旧域的标记数据时,可能会违反这个假设。给新数据贴上标签可能代价高昂,而且扔掉所有旧数据也会是一种浪费。在本文中,我们提出了一个新的迁移学习框架TrAdaBoost,它扩展了基于增强的学习算法(Freund &Schapire, 1997)。TrAdaBoost允许用户利用少量的新标签数据来利用旧数据来为新数据构建高质量的分类模型。我们证明,这种方法可以让我们仅使用少量的新数据和大量的旧数据来学习一个准确的模型。
(系统自动生成,下载前可以参看下载内容)

下载文件列表

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 本站是交换下载平台,提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等多线程下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.
 输入关键字,在本站1000多万海量源码库中尽情搜索: