您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. keras示例程序

  2. addition_rnn.py 执行序列学习以执行两个数字(作为字符串)的添加。 antirectifier.py 演示如何为Keras编写自定义图层。 babi_memnn.py 在bAbI数据集上训练一个内存网络以进行阅读理解。 babi_rnn.py 在bAbI数据集上训练一个双支循环网络,以便阅读理解。 cifar10_cnn.py 在CIFAR10小图像数据集上训练一个简单的深CNN。 conv_filter_visualization.py 通过输入空间中的渐变上升可视化 VGG1
  3. 所属分类:深度学习

    • 发布日期:2017-10-23
    • 文件大小:10mb
    • 提供者:manoerina0411
  1. 《MATLAB R2016a在电子信息工程中的仿真案例分析》源码

  2. 目录 第1章最优的FIR滤波器设计 1.1频率取样的FIR滤波器设计 1.1.1约束条件 1.1.2设计误差 1.2最优的FIR滤波器设计 1.2.1一般最优滤波器 1.2.2加权最优滤波器 1.2.3反对称FIR滤波器 1.2.4微分FIR滤波器 1.3IIR与FIR数字滤波器的比较 第2章基于神经网络的案例分析与实现 2.1农作物虫情预测 2.1.1基于神经网络的虫情预测原理 2.1.2BP网络设计 2.2模型参考控制 2.2.1模型参考控制概念 2.2.2模型参考控制实例分析 2.3神经
  3. 所属分类:其它

    • 发布日期:2018-06-04
    • 文件大小:85kb
    • 提供者:williamanos
  1. holbertonschool-machine_learning:机器学习-源码

  2. 机器学习 这是霍尔伯顿学校的机器学习(ML)培训计划,分为三个学期。从一些数学开始,然后在实践练习中深入学习各种技巧(监督,无监督,强化)。 课程的一些主题: 头三个学期 数学: 线性代数简介 微积分简介 绘图简介 概论 监督学习: 二进制分类 多类别分类 优化技术 正则化技术 卷积神经网络 深度卷积架构 物体检测 人脸验证 神经风格转移 第二学期 数学: 高级线性代数 进阶机率 无监督学习: 降维 聚类 嵌入 自动编码器 生成对抗网络 超参数优化 隐马尔可夫模型 监督学习: 递归神经网络 变形
  3. 所属分类:其它

  1. 用于图像分类的两级分层特征学习

  2. 在某些图像分类任务中,不同类别之间的相似性是不同的,并且样本通常被误分类为高度相似的类别。 为了区分高度相似的类别,需要更具体的功能,以便分类器可以提高分类性能。 在本文中,我们提出了一种基于深度卷积神经网络(CNN)的新颖的两级分层特征学习框架,该框架简单有效。 首先,使用转移学习方法训练不同级别的深度特征提取器,该方法将预训练的深度CNN模型朝新的目标数据集进行微调。 其次,将从所有类别中提取的一般特征和从高度相似的类别中提取的特定特征融合到特征向量中。 然后将最终的特征表示输入线性分类器。
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:695kb
    • 提供者:weixin_38614377
  1. 从线性分类器到卷积神经网络

  2. 本文来自于网络,本文大致分成两大部分,第一部分尝试将本文涉及的分类器统一到神经元类模型中,第二部分阐述卷积神经网络(CNN)的发展简述和目前的相关工作。本文涉及的分类器(分类方法)有:线性回归逻辑回归(即神经元模型)神经网络(NN)支持向量机(SVM)卷积神经网络(CNN)从神经元的角度来看,上述分类器都可以看成神经元的一部分或者神经元组成的网络结构。说逻辑回归之前需要简述一下线性回归。图1单变量的线性回归图1中描述了一个单变量的线性回归模型:蓝点代表自变量x的分布——显然x呈现线性分布。于是我
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:453kb
    • 提供者:weixin_38632046
  1. tf-deep-learning:使用TensorFlow的深度学习模型的集合-源码

  2. tf深度学习 该存储库包含我从Udacity的入门到TensorFlow深度学习课程的工作。 课程链接: : 内容 1.摄氏到华氏转换器 目的: 使用线性回归模型(根据输入预测单个值)进行机器学习的概念证明项目。 潜在的扩展: 能够一次测试多个数字,而不是一个值 查找其他线性方程之间的关系 查找更复杂的方程之间的关系(是否根据复杂度添加更多节点?) 2.服装分类器 目的: 使用简单的神经网络从Fashion MNIST数据集中对10种服装进行分类。 在测试数据集上的使用精度为87.8
  3. 所属分类:其它

  1. 从线性分类器到卷积神经网络

  2. 本文来自于网络,本文大致分成两大部分,第一部分尝试将本文涉及的分类器统一到神经元类模型中,第二部分阐述卷积神经网络(CNN)的发展简述和目前的相关工作。 本文涉及的分类器(分类方法)有:线性回归 逻辑回归(即神经元模型) 神经网络(NN) 支持向量机(SVM) 卷积神经网络(CNN)
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:453kb
    • 提供者:weixin_38663516