1.过拟合、欠拟合及解决方法
在机器学习的过程中,机器学习的效果和实际的真实值总会存在一部分的偏差。训练过程中出现的偏差叫做训练误差,而在测试过程中出现的误差称之为泛化误差。在模型的数据准备期,会将数据集分为训练数据和测试数据,测试数据就是从总体随机选取的一部分数据。当总体数据集的数量比较小时,可使用K折交叉验证(K-fold cross-validation的方法:
首先把总体数据集平分成为K等份,然后依次取出其中的一份作为测试数据集,剩下的作为训练数据集,然后进行K次训练和测试,因此每次实验