您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据挖掘中的新方法:支持向量机.pdf

  2. 支持向量机是数据挖掘中的一个新方法。支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科。目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段。希望《数据挖掘中的新方法——支持向量机》能促进它在我国的普及与提高。 《数据挖掘中的新方法——支持向量机》对象既包括关心理论的研究工作者,也包括关心应用的实际工作者。对于有关领域的具有高等数学知识的实际工作者,略去书中的某些理论
  3. 所属分类:C

    • 发布日期:2010-03-24
    • 文件大小:7mb
    • 提供者:shiyoumaomao
  1. 基于核函数的人脸检测研究

  2. 人脸识别是模式识别与计算机视觉、生物识别技术的交叉学科,而人脸检 测是人脸识别系统的关键环节。根据生物识别领域内最新研究表明,非线性样 本的处理和降维是人脸识别研究现今面临的两个主要问题。 核函数作为一种有效的处理非线性空间(可分/不可分)样本和迅速降维 的理论和方法,随着支持向量机的普及,在近年来的模式识别领域得到了广泛 的关注。将“核方法”与传统的特征提取和分类方法相结合,相继产生了许多 新颖、有效的检测识别方法。本文主要研究内容是核函数的基础理论、算法性 能改进以及在人脸检测中的应用。
  3. 所属分类:其它

  1. Web Data Mining (英文)

  2. 目录回到顶部↑ 第一部分 数据挖掘基础. 第1章 概述3 1.1 什么是万维网3 1.2 万维网和互联网的历史简述4 1.3 web数据挖掘5 1.3.1 什么是数据挖掘6 1.3.2 什么是web数据挖掘7 1.4 各章概要8 1.5 如何阅读本书10 文献评注10 第2章 关联规则和序列模式12 2.1 关联规则的基本概念12 2.2 apriori算法14 2.2.1 频繁项目集生成14 2.2.2 关联规则生成17 2.3 关联规则挖掘的数据格式19 2.4 多最小支持度的关联规则挖掘
  3. 所属分类:专业指导

    • 发布日期:2012-05-02
    • 文件大小:8mb
    • 提供者:chen_767
  1. scikit-learn-0.21.3-中文文档.pdf

  2. scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
  3. 所属分类:机器学习

    • 发布日期:2019-08-24
    • 文件大小:40mb
    • 提供者:h394266861
  1. 易康用户操作手册.pdf

  2. 特别好的资源,希望大家可以用来进行学习e Cognition Developer9—用户指南 353分类(最邻近法)( Nearest Neighbor)135 354分类(亮度阈值)( Brightness Threshold) 37 3.6导出数据 DDDD面 DDDDDDD1 361导出(点) 362导出(多边形) 4教程引言 40 4.1形状识别 40 4.1.1将影像分为基木的对象 4.1.2识别背景 41 4.1.3形状和它们的属性 D I …,43 4.1.4完整的规则集… 44
  3. 所属分类:其它

    • 发布日期:2019-07-28
    • 文件大小:8mb
    • 提供者:qq_40178533
  1. 基于向量机的学习对象分类

  2. 一个基于VS2017,OPENCV3.0,向量机的学习对象分类,可以实时分出螺栓,螺母,垫圈
  3. 所属分类:互联网

    • 发布日期:2021-01-07
    • 文件大小:48mb
    • 提供者:weixin_49740377
  1. 数据挖掘学习笔记(三)

  2. 数据分析与数据挖掘的方法 1.频繁模式 频繁模式:数据中频繁出现的模式。 频繁项集:频繁在事务数据集中一起出现的商品集合。 例如,信用卡分析、患者就诊分析、购物车分析… 2.分类与回归 分类与标签预测是找出描述和区分数据类或概念的模型或函数,以便能够使用模型预测类标识未知的对象的类标号。 分类预测类别(离散的、无序的)标号,回归建立连续值函数模型,也就是用来预测缺失的或难以获得的数值数据值。 典型方法:决策树、朴素贝叶斯分类、支持向量机、神经网络、规则分类器、基于模式的分类、逻辑回归… 3.聚类
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:64kb
    • 提供者:weixin_38618819
  1. 基于张量的多视图特征选择及其在脑疾病中的应用

  2. 在大数据时代,我们可以轻松地从可能来自不同来源或功能子集的多个视图访问信息。 通常,不同的视图为学习任务提供补充信息。 因此,多视图学习可以促进学习过程,并且在广泛的应用领域中很普遍。 例如,在医学科学中,记录了针对每个受试者的一系列医学检查的测量结果,包括从多种来源获得的临床,影像学,免疫学,血清学和认知测量。 具体来说,对于大脑诊断,我们可以进行不同的定量分析,可以将其视为对象的不同特征子集。 期望以有效的方式组合所有这些特征以进行疾病诊断。 但是,一些不太相关的医学检查得出的测量结果可能会
  3. 所属分类:其它

    • 发布日期:2021-03-12
    • 文件大小:347kb
    • 提供者:weixin_38740391
  1. 标签对齐的多任务特征学习,用于阿尔茨海默氏病和轻度认知障碍的多模式分类

  2. 与传统的基于单模式的方法相比,它在诊断和预后阿尔茨海默氏病(AD)以及其前驱阶段(即轻度认知障碍(MCI))方面显示出巨大的优势。 然而,据我们所知,大多数现有方法都集中于挖掘同一主题的多种模式之间的关系,而忽略了不同主题之间的潜在有用关系。 因此,在本文中,我们将通过全面研究模态与主题之间的关系,为AD / MCI的多模态分类提出一种新颖的学习方法。 具体来说,我们提出的方法包括两个后续组件,即标签对齐的多任务特征选择和多模式分类。 在第一步中,将从多种模态中学习的特征选择视为不同的学习任务,
  3. 所属分类:其它

  1. Markov-Miml:基于Markov链的多实例多标签学习算法

  2. 本文的主要目的是提出一种高效,新颖的基于马尔可夫链的多实例多标签(Markov-Miml)学习算法,以评估与多个实例的对象相关的一组标签的重要性。 该算法计算标签的等级以指示一组标签对对象的重要性。 我们的方法是利用实例和对象标签之间的关系。 对象的类标签的等级取决于(i)该对象的实例袋与其他对象的实例袋之间的亲和度度量,以及(ii)相似对象的类标签的等级。 一个对象,其中包含一袋实例,这些实例与具有特定等级标签的高等级的其他对象的实例袋高度相似,该对象将获得该等级标签的高等级。 对基准数据的实
  3. 所属分类:其它

    • 发布日期:2021-03-03
    • 文件大小:892kb
    • 提供者:weixin_38695159
  1. 基于多层正则极限学习机的煤矿突水光谱判别方法

  2. 为了快速而准确地判别煤矿突水水源类型,提出了一种构建多层正则极限学习机(M-RELM)模型的方法,该模型融合了非线性特征提取和分类学习。以激光诱导荧光(LIF)技术获取水样荧光光谱,作为模型的输入;以改进的自动编码器(AE)提取荧光光谱特征,形成模型隐含层的特征空间。为了减少光谱中噪声和异常对分类结果的影响,对极限学习机(ELM)算法进行了正则化优化,根据是否利用未知样本构造训练集,进行L2范数正则极限学习机(L2-RELM)或基于图的流形正则极限学习机(GM-RELM)优化,实现监督或半监督的
  3. 所属分类:其它