点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 基于scikit-learn机器学习库的分类预测
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
B.tech-Disease-Prediction-Project:通过机器学习和Python开发的疾病预测系统最后一年项目-源码
B.技术疾病预测项目 通过机器学习和Python开发的疾病预测系统最后一年项目 最终疾病预测项目 通过机器学习和Python开发的疾病预测系统最后一年项目 机器学习-机器学习是一种使分析模型构建自动化的数据分析方法。 它是人工智能的一个分支,其基础是系统可以从数据中学习,识别模式并在最少的人工干预下做出决策。 Scikit-learn(Sklearn)是用于Python中机器学习的最有用和最强大的库。 它通过Python中的一致性接口为机器学习和统计建模提供了一系列有效的工具,包括分类,回归
所属分类:
其它
发布日期:2021-03-14
文件大小:639kb
提供者:
weixin_42131633
基于scikit-learn机器学习库的分类预测
本文来自于segmentfault,文章详细介绍了Python中如何使用scikit-learn模型对分类、回归进行预测的实现原理等相关知识。摘要:在Python中如何使用scikit-learn模型对分类、回归进行预测?本文简述了其实现原理和代码实现。一旦你在scikit-learn中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:在本教程中,你将会发现如何在Python的机器学习库scikit-learn中使用机器学习模型进行分类和回归预测。文章结构如下:1.如何
所属分类:
其它
发布日期:2021-02-24
文件大小:275kb
提供者:
weixin_38752830
青柠:青柠:解释任何机器学习分类器的预测-源码
酸橙 该项目旨在说明机器学习分类器(或模型)的功能。 目前,我们支持使用称为lim的程序包(对本地可解释的模型不可知的解释的简称)来解释针对文本分类器或作用于表(数字或分类数据的numpy数组)或图像的分类器的各个预测。 石灰是基于提出的工作()。 这是促销视频的链接: 我们的计划是添加更多软件包,以帮助用户理解机器学习并与之进行有意义的交互。 Lime可以解释具有两个或更多类的任何黑匣子分类器。 我们所需要的就是分类器实现一个函数,该函数接收原始文本或numpy数组,并为每个类输出概率。
所属分类:
其它
发布日期:2021-02-23
文件大小:9mb
提供者:
weixin_42160398
基于scikit-learn机器学习库的分类预测
本文来自于segmentfault,文章详细介绍了Python中如何使用scikit-learn模型对分类、回归进行预测的实现原理等相关知识。摘要:在Python中如何使用scikit-learn模型对分类、回归进行预测?本文简述了其实现原理和代码实现。一旦你在scikit-learn中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:在本教程中,你将会发现如何在Python的机器学习库scikit-learn中使用机器学习模型进行分类和回归预测。文章结构如下:1.如何
所属分类:
其它
发布日期:2021-01-27
文件大小:275kb
提供者:
weixin_38724229
immuneML:immunoML是用于自适应免疫受体库数据的机器学习分析的平台-源码
免疫ML immunoML是用于基于机器学习的自适应免疫受体和库(AIRR)的分析和分类的平台。 它支持对实验性B细胞和T细胞受体数据以及用于基准测试的合成数据进行分析。 在immuneML中,用户可以定义灵活的工作流,以支持不同的机器学习库(例如scikit-learn或PyTorch),对不同方法进行基准测试,大量数据特征报告,ML算法及其预测以及结果可视化。 此外,用户可以通过定义自己的数据表示,ML模型,报告和可视化来扩展平台。 有用的链接: 主要网站: : 文档: :
所属分类:
其它
发布日期:2021-03-30
文件大小:14mb
提供者:
weixin_42119989