为解决K-means聚类对初始聚类中心敏感和易陷入局部最优的问题,提出一种基于改进磷虾群算法与K-harmonic means的混合数据聚类算法.提出一种具有莱维飞行和交叉算子的磷虾群算法以改进磷虾群算法易陷入局部极值和搜索效率低的不足,即在每次标准磷虾群位置更新后加入新的位置更新方法进一步搜索以提高种群的搜索能力,同时交替使用莱维飞行与交叉算子对当前群体位置进行贪婪搜索以增强算法的全局搜索能力.20个标准测试函数的实验结果表明,改进算法不易陷入局部最优解,可在较少的迭代次数下有效地搜索到全局最