您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 使用python实现时间序列白噪声检验方式

  2. 主要介绍了使用python实现时间序列白噪声检验方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-16
    • 文件大小:89kb
    • 提供者:weixin_38704835
  1. 利用python实现平稳时间序列的建模方式

  2. 一、平稳序列建模步骤 假如某个观察值序列通过序列预处理可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列进行建模。建模的基本步骤如下: (1)求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值。 (2)根据样本自相关系数和偏自相关系数的性质,选择适当的ARMA(p,q)模型进行拟合。 (3)估计模型中位置参数的值。 (4)检验模型的有效性。如果模型不通过检验,转向步骤(2),重新选择模型再拟合。 (5)模型优化。如果拟合模型通过检验,仍然转向不走(2),充分考虑
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:73kb
    • 提供者:weixin_38532629
  1. 使用python实现时间序列白噪声检验方式

  2. 白噪声检验也称为纯随机性检验, 当数据是纯随机数据时,再对数据进行分析就没有任何意义了, 所以拿到数据后最好对数据进行一个纯随机性检验 acorr_ljungbox(x, lags=None, boxpierce=False) # 数据的纯随机性检验函数 lags为延迟期数,如果为整数,则是包含在内的延迟期数,如果是一个列表或数组,那么所有时滞都包含在列表中最大的时滞中 boxpierce为True时表示除开返回LB统计量还会返回Box和Pierce的Q统计量 返回值: lbvalue:测试
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:50kb
    • 提供者:weixin_38522253
  1. 使用python实现时间序列白噪声检验方式

  2. 白噪声检验也称为纯随机性检验, 当数据是纯随机数据时,再对数据进行分析就没有任何意义了, 所以拿到数据后最好对数据进行一个纯随机性检验 acorr_ljungbox(x, lags=None, boxpierce=False) # 数据的纯随机性检验函数 lags为延迟期数,如果为整数,则是包含在内的延迟期数,如果是一个列表或数组,那么所有时滞都包含在列表中最大的时滞中 boxpierce为True时表示除开返回LB统计量还会返回Box和Pierce的Q统计量 返回值: lbvalue:测试
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:50kb
    • 提供者:weixin_38633157