您好,欢迎光临本网站![请登录][注册会员]  

人工智能下载列表 第3132页

« 1 2 ... .27 .28 .29 .30 .31 3132.33 .34 .35 .36 .37 ... 4583 »

[深度学习] inception_v3_weights_tf_dim_ordering_tf_kernels_notop_update

说明: inception_v3_weights_tf_dim_ordering_tf_kernels_notop_update Linux下是放在“~/.keras/models/”中 Win下则放在Python的“settings/.keras/models/”中 Windows-weights路径:C:\Users\你的用户名\.keras\models anaconda下依然好用
<ttz_csdn> 上传 | 大小:77mb

[机器学习] K-Means聚类算法

说明: 这份笔记对应斯坦福大学机器学习课程中K-Means算法的相关视频。
<qq_30091945> 上传 | 大小:426kb

[深度学习] Stability Margin Improvement of Vehicular Platoon Considering

说明: The platooning of autonomous vehicles has the potential to significantly improve traffic capacity, enhance highway safety, and reduce fuel consumption. This paper studies the scalability limitations of large-scale vehicular platoons moving in rigid
<czzc1990> 上传 | 大小:2mb

[深度学习] Platoon Control of Connected Vehicles from a Networked Control Perspective

说明: The platooning of connected and automated vehicles has the potential to significantly benefit the road traffic, including enhancing highway safety, improving traffic capacity, and reducing fuel consumption. This paper presents a four-component analy
<czzc1990> 上传 | 大小:1mb

[深度学习] Dynamical Modeling and Distributed Control of Connected and Automated Vehicles

说明: The platooning of connected and automated vehicles (CAVs) is expected to have a transformative impact on road transportation, e.g., enhancing highway safety, improving traffic utility, and reducing fuel consumption. Requiring only local information,
<czzc1990> 上传 | 大小:2mb

[深度学习] Distributed Adaptive Sliding Mode Control of Vehicular Platoon

说明: In a platoon control system, a fixed and symmetrical topology is quite rare, because of adverse communication environments and continuously moving vehicles. This paper presents a DASMC (Distributed Adaptive Sliding Mode Control) scheme for more real
<czzc1990> 上传 | 大小:3mb

[深度学习] jieba+百度分词词库(60万+)

说明: jieba和百度分词词库;
<qq_30317861> 上传 | 大小:2mb

[深度学习] inception_v3_weights_tf_dim_ordering_tf_kernels_notop

说明: inception_v3_weights_tf_dim_ordering_tf_kernels_notop Linux下是放在“~/.keras/models/”中 Win下则放在Python的“settings/.keras/models/”中 Windows-weights路径:C:\Users\你的用户名\.keras\models anaconda下依然好用
<ttz_csdn> 上传 | 大小:77mb

[VR] dso_ros-catkin版本

说明: 使用方法参照https://blog.csdn.net/TaTianZhuanShi/article/details/54412392?locationNum=10&fps=1 但是在步骤下载ros_dso并按照这一步,不要执行git clone https://github.com/JakobEngel/dso_ros这一句,这个资源不是catkin版本的,所以后面会有问题。
<luanfei3717> 上传 | 大小:17kb

[深度学习] inception_v3_weights_tf_dim_ordering_tf_kernels

说明: inception_v3_weights_tf_dim_ordering_tf_kernels Linux下是放在“~/.keras/models/”中 Win下则放在Python的“settings/.keras/models/”中 Windows-weights路径:C:\Users\你的用户名\.keras\models anaconda下依然好用
<ttz_csdn> 上传 | 大小:83mb

[机器学习] AI简史-一张图读懂

说明: AI的发展历史:你可能听说过神经网络,这是当今最前沿的人工智能背后的AI工具。虽然深度学习的概念相对较新,但它们建立的基础可以追溯到1943年的数学理论。
<qq_27586341> 上传 | 大小:2mb

[深度学习] xception_weights_tf_dim_ordering_tf_kernels_notop

说明: xception_weights_tf_dim_ordering_tf_kernels_notop Linux下是放在“~/.keras/models/”中 Win下则放在Python的“settings/.keras/models/”中 Windows-weights路径:C:\Users\你的用户名\.keras\models anaconda下依然好用
<ttz_csdn> 上传 | 大小:73mb
« 1 2 ... .27 .28 .29 .30 .31 3132.33 .34 .35 .36 .37 ... 4583 »