您好,欢迎光临本网站![请登录][注册会员]  

人工智能下载列表 第501页

« 1 2 ... .96 .97 .98 .99 .00 501.02 .03 .04 .05 .06 ... 4583 »

[深度学习] 第四章_经典网络.pdf

说明:LeNet-5是由$LeCun$ 提出的一种用于识别手写数字和机器印刷字符的卷积神经网络(Convolutional Neural Network,CNN)$^{[1]}$,其命名来源于作者$LeCun$的名字,5则是其研究成果的代号,在LeNet-5之前还有LeNet-4和LeNet-1鲜为人知。LeNet-5阐述了图像中像素特征之间的相关性能够由参数共享的卷积操作所提取,同时使用卷积、下采样(池化)和非线性映射这样的组合结构,是当前流行的大多数深度图像识别网络的基础。
<hkd_ywg> 上传 | 大小:12mb

[深度学习] 第六章_循环神经网络(RNN).pdf

说明:时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。一般的神经网络,在训练数据足够、算法模型优越的情况下,给定特定的x,就能得到期望y。其一般处理单个的输入,前一个输入和后一个输入完全无关,但实际应用中,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的
<hkd_ywg> 上传 | 大小:5mb

[深度学习] 生成对抗网络(GAN).pdf

说明:生成对抗网络(GAN, Generative adversarial network)自从2014年被Ian Goodfellow提出以来,掀起来了一股研究热潮。GAN由生成器和判别器组成,生成器负责生成样本,判别器负责判断生成器生成的样本是否为真。生成器要尽可能迷惑判别器,而判别器要尽可能区分生成器生成的样本和真实样本。
<hkd_ywg> 上传 | 大小:5mb

[深度学习] 第八章_目标检测.pdf

说明:目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。
<hkd_ywg> 上传 | 大小:13mb

[深度学习] 第九章_图像分割.pdf

说明:图像分割是预测图像中每一个像素所属的类别或者物体。基于深度学习的图像分割算法主要分为两类: 为图像中的每个像素分配一个类别,如把画面中的所有物体都指出它们各自的类别。
<hkd_ywg> 上传 | 大小:9mb

[深度学习] 第十章_强化学习.pdf

说明:其他许多机器学习算法中学习器都是学得怎样做,而RL是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报。在很多场景中,当前的行动不仅会影响当前的rewards,还会影响之后的状态和一系列的rewards。RL最重要的3个特定在于: (1) 基本是以一种闭环的形式; (2) 不会直接指示选择哪种行动(actions); (3) 一系列的actions和奖励信号(reward signals)都会影响之后较长的时间。
<hkd_ywg> 上传 | 大小:730kb

[深度学习] 第十一章_迁移学习.pdf

说明:​ 本章主要简明地介绍了迁移学习的基本概念、迁移学习的必要性、研究领域和基本方法。重点介绍了几大类常用的迁移学习方法:数据分布自适应方法、特征选择方法、子空间学习方法、以及目前最热门的深度迁移学习方法。除此之外,我们也结合最近的一些研究成果对未来迁移学习进行了一些展望。并提供了一些迁移学习领域的常用学习资源,以方便感兴趣的读者快速开始学习。
<hkd_ywg> 上传 | 大小:3mb

[深度学习] 第十二章_网络搭建及训练.pdf

说明:TensorFlow支持各种异构平台,支持多CPU/GPU、服务器、移动设备,具有良好的跨平台的特性;TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性;此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支持,Kernel特化方面表现出众。
<hkd_ywg> 上传 | 大小:24kb

[深度学习] 第十三章_优化算法.pdf

说明:目前大部分的深度学习模型仍然需要海量的数据支持。例如 ImageNet 数据就拥有1400多万的图片。而现实生产环境中,数据集通常较小,只有几万甚至几百个样本。这时候,如何在这种情况下应用深度学习呢? (1)利用预训练模型进行迁移微调(fine-tuning),预训练模型通常在特征上拥有很好的语义表达。此时,只需将模型在小数据集上进行微调就能取得不错的效果。这也是目前大部分小数据集常用的训练方式。视觉领域内,通常会ImageNet上训练完成的模型。自然语言处理领域,也有BERT模型等预训练模
<hkd_ywg> 上传 | 大小:619kb

[深度学习] 第十四章_超参数调整.pdf

说明:关于训练深度学习模型最难的事情之一是你要处理的参数的数量。无论是从网络本身的层宽(宽度)、层数(深度)、连接方式,还是损失函数的超参数设计和调试,亦或者是学习率、批样本数量、优化器参数等等。这些大量的参数都会有网络模型最终的有效容限直接或者间接的影响。面对如此众多的参数,如果我们要一一对其优化调整,所需的无论是时间、资源都是不切实际。结果证实一些超参数比其它的更为重要,因此认识各个超参数的作用和其可能会造成的影响是深度学习训练中必不可少的一项重要技能。
<hkd_ywg> 上传 | 大小:794kb

[深度学习] 第十五章_异构运算、GPU及框架选型.pdf

说明:深度学习训练和推理的过程中,会涉及到大量的向量(vector),矩阵(matrix)和张量(tensor)操作,通常需要大量的浮点计算,包括高精度(在训练的时候)和低精度(在推理和部署的时候)。GPU, 作为一种通用可编程的加速器,最初设计是用来进行图形处理和渲染功能,但是从2007年开始,英伟达(NVIDIA)公司提出了第一个可编程通用计算平台(GPU),同时提出了CUDA框架,从此开启了GPU用于通用计算的新纪元。此后,不计其数的科研人员和开发者,对各种不同类型的算法用CUDA进行(部分)改
<hkd_ywg> 上传 | 大小:736kb

[深度学习] 第十六章_NLP.pdf

说明:50多年来 NLP 的历史发展可以分为三个浪潮,前两波以理性主义和经验主义的形式出现,为当前的深度学习浪潮铺平了道路。NLP的深层学习革命的主要支柱是: (1)语言嵌入实体的分布式表征,(2)由于嵌入而产生的语义泛化, (3)自然语言的大跨度深序列建模,(4)能够从低到高表示语言层次的分层网络,以及(5)解决许多联合 NLP 问题的端对端深度学习方法。
<hkd_ywg> 上传 | 大小:288kb
« 1 2 ... .96 .97 .98 .99 .00 501.02 .03 .04 .05 .06 ... 4583 »