您好,欢迎光临本网站![请登录][注册会员]  

人工智能下载列表 第3459页

« 1 2 ... .54 .55 .56 .57 .58 3459.60 .61 .62 .63 .64 ... 4626 »

[深度学习] fast PCA降维

说明: fastPCA降维实现,把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的m个特征互不相关。从旧特征到新特征的映射捕获数据中的固有变异性,已通过测试可以使用。
<sunshine_lmn> 在 上传 | 大小:471

[深度学习] CodeSLAM — Learning a Compact, Optimisable Representation for Dense Visual SLAM

说明: We present a new compact but dense representation of scene geometry which is conditioned on the intensity data from a single image and generated from a code consisting of a small number of parameters. We are inspired by work both on learned depth fr
<algofei> 在 上传 | 大小:887808

[深度学习] Tencent- CNN in MRF: Video Object Segmentation Spatio-Temporal MRF

说明: This paper addresses the problem of video object segmentation, where the initial object mask is given in the first frame of an input video. We propose a novel spatiotemporal Markov Random Field (MRF) model defined over pixels to handle this problem.
<algofei> 在 上传 | 大小:2097152

[深度学习] A Twofold Siamese Network for Real-Time Object Tracking

说明: Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam i
<algofei> 在 上传 | 大小:1048576

[机器学习] RNN lstm(回归例子)代码及高版本更新

说明: 莫凡教程RNN的lstm对回归例子的代码及在高版本TensorFlow代码更新
<weixin_38684191> 在 上传 | 大小:5120

[深度学习] A Face-to-Face Neural Conversation Model

说明: Neural networks have recently become good at engaging in dialog. However, current approaches are based solely on verbal text, lacking the richness of a real face-to-face conversation. We propose a neural conversation model that aims to read and gene
<algofei> 在 上传 | 大小:990208

[深度学习] LLVM Backend Turorial

说明: Tutorial: Creating an LLVM Backend for the Cpu0 Architecture
<noahkong> 在 上传 | 大小:3145728

[深度学习] 3D-RCNN: Instance-level 3D Object Reconstruction via Render-and-Compare

说明: We present a fast inverse-graphics framework for instance-level 3D scene understanding. We train a deep convolutional network that learns to map image regions to the full 3D shape and pose of all object instances in the image. Our method produces a
<algofei> 在 上传 | 大小:3145728

[深度学习] IBM-人工智能与认知计算

说明: 很不错的报告,大家可以参考一下,相当全面,对于理解认知计算很好
<studypeipei> 在 上传 | 大小:15728640

[深度学习] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

说明: Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D
<algofei> 在 上传 | 大小:630784

[深度学习] ENN theory

说明: 用遗传算法优化神经网络权重,通过像遗传算法的变异,交叉和遗传来训练参数,从而得出最优的解。相比于传统的梯度下降法,他可以得到更优的解,但是对计算机并行运算能力要求更高。
<weixin_39960221> 在 上传 | 大小:692224

[深度学习] 3D Pose Estimation and 3D Model Retrieval for Objects in the Wild

说明: We propose a scalable, efficient and accurate approach to retrieve 3D models for objects in the wild. Our contri- bution is twofold. We first present a 3D pose estimation approach for object categories which significantly outper- forms the state-of-
<algofei> 在 上传 | 大小:1048576
« 1 2 ... .54 .55 .56 .57 .58 3459.60 .61 .62 .63 .64 ... 4626 »