您好,欢迎光临本网站![请登录][注册会员]  

人工智能下载,机器学习下载列表 第1295页

« 1 2 ... .90 .91 .92 .93 .94 1295.96 .97 .98 .99 .00 ... 2656 »

[机器学习] 英文情感词典sentiwordnet

说明: 英文文本情感分析中非常出名的情感词典sentiwordnet,适用于NLP
<layman2016> 上传 | 大小:12mb

[机器学习] MOEA/D代码 自己实现 C++版

说明: ZDT1、ZDT2、DTLZ1测试函数也写好了,附有实验效果图,希望对大家学习有帮助!! void generateLamda(int M)//产生N 个权重向量 weight vector //lamdaM 为 N*M矩阵(N个lamda,每个lamda有m维) { //动态生成二维数组 lamdaMat=new double *[N+3];//注意,int*[10]表示一个有10个元素的指针数组 for(int i=1; i<=N+1; i++) { lamdaMat[i]=new
<qq_28597441> 上传 | 大小:756kb

[机器学习] BP神经网络预测超详细

说明: 基于BP神经网络,测试集辛烷值含量预测结果对比
<sbxkj491831792> 上传 | 大小:169kb

[机器学习] SPEA2 C++代码实现

说明: //个体的类声明: class individual { public: double value[Dimension];//每一维xi的值 int sp[2*popsize]; //支配i的集合 int np;//个体i支配的数量 int is_dominated;//集合sp的个数 int rank;//优先级,Pareto级别为当前最高级 double fitness;//个体适应度值 void init();//初始化个体 double fvalue[2];//ZDT1问题目标函数的值
<qq_28597441> 上传 | 大小:95kb

[机器学习] kaggle泰坦尼克数据titanic

说明: 平台下载的原始三个数据train.csv test.csv gender_submission.csv (本来想0积分 分享给大家 无奈最低是1分了)
<baidu_28122193> 上传 | 大小:32kb

[机器学习] Generalized-ICP

说明: Aleksandr V. Segal的论文Generalized-ICP。In this paper we combine the Iterative Closest Point (’ICP’) and ‘point-to-plane ICP‘ algorithms into a single probabilistic framework.
<zhangfenger> 上传 | 大小:2mb

[机器学习] fast_mtcnn

说明: 快速mtcnn,github上整理的,效果一般,速度贼快。
<zxj_yantai> 上传 | 大小:29kb

[机器学习] 国科大高级人工智能2016和2017年共两套期末试卷

说明: 中国科学院大学高级人工智能课,吴高巍、沈华伟、罗平
<zihao1996> 上传 | 大小:1mb

[机器学习] Robust Estimation and Applications in Robotics

说明: The goal of this tutorial is helping to address the aforementioned challenges by providing an introduction to robust estimation with a particular focus on robotics. First, this is achieved by giving a concise overview of the theory on M-estimation.
<giscl> 上传 | 大小:2mb

[机器学习] Information Theory and Statistics A Tutorial

说明: This tutorial is concerned with applications of information theory concepts in statistics, in the finite alphabet setting. The information measure known as information divergence or Kullback-Leibler distance or relative entropy plays a key role, oft
<giscl> 上传 | 大小:791kb

[机器学习] Graph-Based Semi-Supervised Learning

说明: While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabele
<giscl> 上传 | 大小:1mb

[机器学习] Theory of Active Learning

说明: Active learning is a protocol for supervised machine learning, in which a learning algorithm sequentially requests the labels of selected data points from a large pool of unlabeled data. This contrasts with passive learning, where the labeled data a
<giscl> 上传 | 大小:1mb
« 1 2 ... .90 .91 .92 .93 .94 1295.96 .97 .98 .99 .00 ... 2656 »