© 1999-2048 dssz.net 粤ICP备11031372号
[深度学习] Markov Chain Monte Carlo in Practice
说明: MCMC方法就是*构造合适的马尔科夫链进行抽样而使用蒙特卡洛方法进行积分计算,既然马尔科夫链可以收敛到平稳分布。我们可以建立一个以π为平稳分布的马尔科夫链,对这个链运行足够长时间之后,可以达到平稳状态。此时马尔科夫链的值就相当于在分布π(x)中抽取样本。利用马尔科夫链进行随机模拟的方法就是MCMC。 第一个MC: Monte Carlo(蒙特卡洛)。这个简单来说是让我们使用随机数(随机抽样)来解决计算问题。在MCMC中意味着:后验分布作为一个随机样本生成器,我们利用它来生成样本(simulat<alladins> 上传 | 大小:15mb